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Abstract

Objects model the world, and state is fundamental to a faithful modeling. Engineers use state machines to
understand and reason about state transitions, but programming languages provide little support for building
software based on state abstractions. We propose Plaid, a language in which objects are modeled not just
in terms of classes, but in terms of changing abstract states. Each state may have its own representation,
as well as methods that may transition the object into a new state. A formal model precisely defines the
semantics of core Plaid constructs such as state transition and trait-like state composition. We evaluate Plaid
through a series of examples taken from the Plaid compiler and the standard libraries of Smalltalk and Java.
These examples show how Plaid can more closely model state-based designs, enhancing understandability,
enhancing dynamic error checking, and providing reuse benefits.
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1 Introduction

Object-oriented programming provides a rich environment for modeling real-world and conceptual objects
within the computer. Fields capture attributes of objects, methods capture their behavior, and subtyping cap-
tures specialization relationships among objects. A key element missing from object-oriented programming
languages, however, is abstract states and conceptual state change. State change is pervasive in the natural
world; as a dramatic example, consider the state transition from egg, to caterpillar, to pupae, to butterfly.
Modeling systems with abstract states and transitions between them is also common in many engineering
disciplines.

In computer science, state machines are important modeling concepts in the UML. Abstract states are
also a critical, though often implicit, part of many library APIs—and any client using that API must be aware
of those states to use the API correctly. For example, a file may be in the open or closed state. In the open
state, one may read or write to a file, or one may close it, which causes a state transition to the closed state.
In the closed state, the only permitted operation is to (re-)open the file.

Files provide a simple example of abstract states, but there are many more. Streams may be open or closed,
iterators may have elements available or not, collections may be empty or not, and even lowly exceptions can
have their cause set, or not1. State spaces may be complex: In ResultSet from the Java JDBC library, we
found 33 unique states dealing with different combinations of openness, direction, random access, insertions,
etc [7]. States are also common: a recent study of protocols in Java suggests that almost three times as many
types define protocols as define type parameters [3]. They also cause significant pain: for instance, in a
study of problems developers experienced when using the ASP.NET framework, 3/4 of the issues identified
involved temporal constraints such as the state of the framework in various callback functions [16]. All this
raises a natural question: why not support abstract states in programming languages?

We previously proposed Typestate-Oriented Programming as a new programming paradigm in which
programs are made up of dynamically created objects, each object has a typestate that is changeable, and
each typestate has an interface, representation, and behavior [2]. The term typestate refers to a static abstract
state checking methodology proposed by Strom and Yemini [25]; this paper focuses on a dynamically-typed
setting, and so we will use the terms (abstract) state and protocol in place of typestate to avoid confusion.

A programming language with abstract states can have many benefits. First, in the case of stateful
abstractions, the code will more clearly reflect the intended design. This in turn will make state constraints
more salient to developers who need to be aware of them. If state constraints are implicitly enforced by the
object model, there is no need to code up explicit checks; thus code implementing states can be more concise.
Explicit state models raise the level of error messages; instead of (perhaps) silently corrupting a data structure
when an inappropriate method is called, the runtime can signal an error that that method is unavailable in the
current state. Finally, explicit modeling of states also exposes new concepts for widespread reuse; candidates
may include open/closed resources or positioning (beginning, middle, end) of streams.

Contribution. The contribution of this paper is the concrete design and evaluation of Plaid, an object-oriented
programming language that incorporates first-class state change as well as trait-like state composition. Plaid
has been implemented, and has proven effective for writing a diverse set of small and medium-sized (up to
10kLOC) programs, including a self-hosted compiler. For the purposes of this paper, Plaid is dynamically
typed, though there are plans to add a gradual type system following recent work on gradual typestates [28].

The most interesting aspects of Plaid’s design come from the intersection of state change with support
for a trait-like model of composition [12]. Central goals of the language design include supporting the

1E.g. in Java, the cause of an exception can only be set once.
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primary state modeling constructs from statecharts [14], as well as flexible code reuse. Our design includes a
hierarchical state space, so that the open state of a stream can be refined into within and eof substates
indicating whether there is data left to be processed. Handling real designs in a modular way requires support
for multi-dimensional state spaces, as in and-states from [14]; an example is a separate dimension of a
stream’s state indicating whether the stream has been marked with a location or not. Modularity further
requires reasoning about dimensions separately; for example, the mark() method should affect the marked
state dimension but it should not affect whether the stream is at eof. Dimensions also delineate natural
points of reuse; we would like to specify them separately and combine them using a trait-like composition
operator.

We position Plaid relative to earlier work in the next section. Plaid’s design is described by example in
section 3. This section validates our design, using a number of carefully chosen examples to concretely illus-
trate how Plaid provides the potential benefits described above. We also discuss our prototype implementation
of Plaid, targeting the JVM.

In order to be precise about Plaid’s semantics, Section 4 provides a formal model that includes the
semantics of all of Plaid’s major features. Section 5 describes how the surface Plaid language is elaborated
into the core formal model. The paper concludes with a discussion of ongoing work on Plaid, together
with an argument that the concrete benefits validated by example lead to higher-level benefits in software
development and evolution.

2 Background and Related Work

Plaid’s state constructs are inspired and guided by state modeling approaches such as Harel’s statecharts [14].
Other modeling approaches include Pernici’s Objects with Roles Model [20], which models objects using a
set of roles, each of which can be in one of several abstract states.

Strom and Yemini proposed typestate as a compiler-checkable abstraction of the states of a data struc-
ture [25]. The Fugue system was the first to integrate typestates with an object-oriented programming
language [10]. Bierhoff et al. later observed that the complexity of protocols such as the one defined by the
JDBC ResultSet interface requires rich state modeling constructs like those proposed by Harel [7]. This paper
considers a dynamically-typed setting, so we do not discuss static checkers further.

State-dependent behavior can be encoded using the State design pattern [13]. However, this pattern is
less direct than the language support we propose, and it does not help with ensuring that a client only uses
operations that are available in the current state.

Dynamic languages such as Self [27] provide the ability to add and remove methods, as supported by
Plaid’s state change operator. Changing a delegation slot in Self can also be used to simulate state change,
as can the become method in Smalltalk [18]. We believe that Plaid’s more structured and more declarative
constructs for state modeling have advantages in terms of error checking, succinctness, and clear expression
of design compared to these encodings. Plaid’s prototype-based object model is also inspired by Self’s.

Prior State-Based Languages. The Actor model [15] treats states in a first-class way, using the current state
of an actor to define the response to messages in a concurrent setting.

Taivalsaari extended class-based languages with explicit definitions of logical states (modes), each with
its own set of operations and corresponding implementations [26]. Plaid’s object model differs in providing
explicit state transitions (rather than implicit ones determined by fields) and in allowing different fields in
different states.
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The Ferret language [8] provides multiple classification, in which objects can be classified in one of
several states in each of multiple dimensions. Ferret attaches dimensions to classes, not other states, so
dimensions cannot come and go with state changes (unlike in Plaid and Statecharts).

A number of CAD tools such as iLogic Rhapsody or IBM/Rational Rose Real-Time support a program-
ming model based even more directly on Statecharts [14]; such models benefit from many rich state modeling
features but lack the dynamism of object-oriented systems. Recently Sterkin proposed embedding the princi-
pal features of Statecharts as a library within Groovy, providing a smoother integration with objects [23]. Our
approach focuses on adding states to object-oriented languages, rather than libraries.

Other researchers have explored adding a class change primitive to statically-typed languages [11, 4, 6].
These systems, however, do not support the richness of state models (e.g. and-states) as provided in Statecharts
and in Plaid.

Schaerli et al. proposed traits [12] as a composition mechanism that avoids some of the semantic
ambiguities of multiple inheritance. Schaerli’s traits did not have fields, but Plaid follows prior designs [5]
to add them. Like some other recent work [22, 9], Plaid does not have the flattening property, in which the
composition structure of traits is compiled away and does not affect the semantics of the resulting program.
We lose the simplicity of flattening but gain the ability to model structured state spaces more directly, as
described below.

An initial sketch of the Plaid language design was presented earlier [2] as an instance of the Typestate-
Oriented Programming paradigm. While we recap the motivation and concept of the language from this
earlier work, that paper described an unimplemented language, and neither defined the language semantics
nor investigated the modeling of complex state spaces, which are the key contributions of this paper. In an
earlier 4-page workshop paper, we explored the need for a modular state change operator that affects only
one dimension of state change at a time [1]; this paper gives the semantics for a concrete solution to that
problem. Other recent work has begun to explore a gradual, permission-based type system for Plaid [28].

3 Language

In this section we will introduce Plaid by example. These examples serve the dual purpose of explaining the
language and validating the concrete benefits of Plaid.

3.1 Basics of State Change

Object protocols are rules dictating the ordering of method calls on objects. The concrete state of an object
with a protocol can be abstracted into a finite number of abstract states and the object transitions dynamically
between these abstract states. Therefore, clients must be aware of the abstract states in order to use the object
correctly.

Most programming languages provide no direct support for protocols. Instead, protocols are encoded in
the language using some combination of the state design pattern [13], conditional tests on fields, and other
indirect mechanisms. In Plaid, protocols are supported directly with states, which are like classes in Java,
with the crucial distinction that an object’s state changes as the object evolves.

Consider the state space of files, the canonical protocol example [2], shown in Figure 1. Some files are
open and some are closed. We close an open file by calling the close method and open a closed file by
calling the open method. One cannot open an open file so the open file state does not include the open
method. Similarly, one cannot read a closed file so the closed file state does not include the read method.
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read()

close()

open()

Figure 1: State space of File.

1 state File {
2 val filename;
3 }
4 state OpenFile case of File = {
5 val filePtr;
6 method read() { ... }
7 method close() { this <- ClosedFile; }
8 }
9 state ClosedFile case of File {

10 method open() { this <- OpenFile; }
11 }

Listing 1: File states in Plaid

The state space of files can be encoded cleanly in Plaid as shown in Listing 1. The state keyword is
used to define a state. The File state contains the fields and methods that are common between open and
closed files. In this case, only the filename is shared. Fields are declared with the val keyword.

OpenFile and ClosedFile define the methods and fields that are specific to open and closed states.
Both are substates of File. Specialization is declared with the case of keyword. In addition, case of
implies orthogonality: files can either be open or closed, not both. Methods are defined with the method
keyword. Open files have a read method, a file pointer field which is presumably used by the read method
to read the file, and a close method. Closed files have the open method.

The open and close method bodies contain the most novel bit of syntax. An object referred to by a
variable x can be changed to state S by writing x <- S. In the open method we transition the receiver,
referred to as in Java by the keyword this, to the open state by writing this <- OpenFile.

An example file client is shown in Listing 2. The readClosedFile method takes a file as an argument,
opens it, reads from it, closes it, and returns the value read from the file. All of the method calls are valid if
a closed file is passed to the method. If an open file is passed instead the open method call will fail. The

1 method readClosedFile(f) {
2 f.open();
3 val x = f.read();
4 f.close();
5 x; //return
6 }

Listing 2: File client in Plaid

4



Egg ChrysalisCaterpillar Imago
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hatch() anchor() metamorphosize()

Butterfly

Figure 2: Buttefly life-cycle.

library writers do not need to write any special error handling code to handle this condition like they would in
Java. This has the concrete benefit that Plaid code for the equivalent design is smaller.

In most programming languages, fields of an object are often null in certain abstract states. For example,
Java files might contain a null filePtr when the file is closed. Null pointers are a frequent cause of runtime
errors and their cause can be difficult to diagnose. For these reasons, Tony Hoare recently called null pointers
a “billion dollar mistake,” and we have not repeated this mistake in Plaid.

Plaid objects are always consistent: in other languages a programmer might forget to check the state before
performing an operation and perform the operation on an object in the wrong state. Similarly, the operation
might fail, but with a less specific error message. For example, if a client calls the read method, implemented
in Java without error handling, on a closed file, Java might throw a NullPointerException for a null
dereference of filePtr.

3.2 State Transtions

The file state space is a complete directed graph, every pair of states is connected in both directions by an edge.
Other kinds of objects have incomplete state spaces. Consider the life-cycle of a butterfly, which is illustrated
by the state-space in Figure 2. A butterfly egg hatches to a caterpillar, but it cannot ‘un-hatch’. Similarly, a
butterfly never transitions directly from a caterpillar to an imago, it always transforms to a chrysalis first.

To preserve the integrity of incomplete protocols, only the method receiver (this), can be the target of a
state change operation. If Plaid did not have this restriction it would be trivial for programmers to inadvertently
violate a protocol. Consider: val x = new Egg; x<-Caterpillar; x<-Egg. This illegal Plaid code
violates the protocol by restoring a caterpillar to an egg. Instead, in legal Plaid code, methods defined in the
butterfly states perform all of the state transitions.

3.3 Dimensions of State Change

Many objects in the real world are not as simple as files or butterflies. Some objects are composed of multiple
states, particularly when objects are built up from reusable components. These components may change
their state independently, or orthogonally. For example, cars have both gears and brakes and when the car
shifts gears it has no effect on the brakes. States that change independently are in different dimensions. State
dimensions in programming languages were introduced in [7].

More concretely, let us say a stream is in state unmarked in dimension markable, and state within in
dimension position. If the object changes to state marked, also in dimension markable, it will lose all of
the fields and methods defined in unmarked (such as mark), gain those in marked (such as reset), and
keep those in within (such as read).

The full power of Plaid comes when component states are themselves composed of multiple states. In
such a setting the component states are gained and lost along with their parents. Many of this kind of deep
hierarchies exist in the wild [3]. For example, in the Java Database Connectivity library, the ResultSet
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Figure 3: ResultSet state-chart.

interface is composed from a combination of 33 states, four levels of nesting, and eight dimensions. A slightly
simplified schematic of the state space is shown in Figure 3.

The features of the language just described correspond directly to the ‘hierarchical-states’, ‘and-states’
and ‘or-states’ proposed by Harel in his seminal state-chart paper [14]. Hierarchical-states are states that are
composed of other states. And-states are states that both must be present in an object—separate dimensions
that are modeled using with composition in Plaid. Finally, or-states are states in the same dimension, and
therefore only one can be present in an object—a state that is a case of another state. These features are
the fundamental building blocks of the Harel state chart formalism (which forms the basis for UML state
diagrams), and are naturally encoded in Plaid exactly in the manner we just described.

In the ResultSet diagram (Figure 3), or-states are separated by white space. For example, Open and
Closed are states in one dimension, ForwardOnly and Scrollable are in another. Hierarchical-states
are indicated by nesting of the state rectangles. For example, Scrolling is a child of Open and Begin
of Scrolling. The names of states with children, like Open appear outside the state-rectangle, and
the names of simple states without children, like Inserted, appear inside the state-rectangle. Finally,
and-states are separated into orthogonal regions by dotted lines, so Direction and Status are and-states.

There is a natural one-to-one correspondence between the state rectangles in the diagram and the state
declarations in Plaid code. A subset of the declarations for ResultSet states are shown in Listing 3. The
or-states are all declared to be cases of their dimensions. For example, ForwardOnly and Scrollable
are cases of the Direction dimension. The dimensions are themselves states in which case their or-states
will inherit all of the dimension’s fields and members. Sometimes, however the state is a pure dimension and
does not contain members. In this case the state only serves to ensure that or-states do not appear together.
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1 state Open case of ResultSet =
2 Direction with Status with Action;
3 state Direction;
4 state ForwardOnly case of Direction;
5 state Scrollable case of Direction;
6 state Status;
7 state ReadOnly case of Status;
8 state Updatable case of Status;
9 state Action;

10 state Scrolling case of Action;
11 state Inserting case of Action;
12 state Insert case of Inserting;
13 state Inserted case of Inserting;
14 ...
15

16 val myResultSet = new Open @ ForwardOnly
17 with Updatable with Insert;

Listing 3: ResultSet state declarations and instantiation

The Open state contains several nested and-states. Therefore, Open is declared as a composition
of the three nested dimensions using the with operator. This encoding captures the invariant that any
object in the Open state is also in the Direction, Status, and Action states. Often ResultSet
objects will be instantiated with children of the three dimensions Direction, Status, and Action. For
example, at the end of Figure 3, myResultSet is assigned to an open object in the ForwardOnly, Updatable
and Insert states. This object will contain the methods and fields from Insert, Inserting, Action,
Updatable, Status, Forwardonly, Direction, Open and ResultSet. If we were to change the
state of myResultSet to Inserted by calling a method that does so for us the object would have all of
the same states, with the exception that Insert will be replaced with Inserted. This is because Insert
and Inserted are or-states from the same dimension. When we close the object, we lose not only the
Open state but all of the states nested inside it. We are left only with Closed and ResultSet.

The @ operator is syntactic sugar that allows an initializer to conveniently choose nested sub-states. The
myResultSet initializer in Figure 3 is desugared to the following code:

1 var myResultSet = new Open;
2 myResultSet <- ForwardOnly with Updatable
3 with Insert;

First, an Open object is created. Then the object is changed to substates of the three dimensions using the
state change operator. Notice that the left side of the state-change operator is not this in the de-sugared
code which violates the restriction discussed in Section 3.2. This is okay, because the restriction only applies
to Plaid source which in this case uses the @ operator.

In this example the reader can see that the Plaid code closely reflects the design embodied in the state
chart. The stateful design is salient in the state declarations. Since the mapping between the code and the
state chart is so clear, a programmer reading the state declarations can easily understand the relationship
between the states. In fact, our group has built a tool to automatically extract a state chart from Plural2, a
typestate checker for annotated Java code, and although we have not built such a tool for Plaid, the language

2http://code.google.com/p/pluralism/
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1 state Position {
2 state notEndState = NotEnd;
3 state endState = End;
4 method setToEnd();
5 method setToStart();
6 val vector, minPos, maxPos;
7 var currPos;
8 }
9

10 state NotEnd case of Position {
11 method setToEnd() {
12 this.currPos = this.maxPos;
13 this <- this.endState;
14 }
15 method setToStart() {
16 this.currPos = this.minPos;
17 }
18 method nextPosition() {
19 this.currPos++;
20 if (this.currPos >= this.maxPos) {
21 this <- this.endState;
22 }
23 }
24 }
25

26 state End case of Position {
27 method setToEnd() { /∗ no op ∗/}
28 method setToStart() {
29 this.currPos = this.minPos;
30 this <- this.notEndState;
31 }
32 }

Listing 4: Position code.

design clearly enables it. A second potential benefit is that code for each state can be given separately in the
appropriate state declaration, potentially permitting more fine-grained reuse across multiple implementations
of the ResultSet interface.

3.4 State members

As we mentioned in the introduction, Plaid combines state change with support for a trait-like model of
composition [12]. We now illustrate a particularly novel feature of Plaid, namely, state members. States can
have other states as members, and these state members can be customized upon composition. This allows for
consistent state update, in presence of composite states.

We illustrate state members and their benefits through a Plaid version of a ReadWriteStream adapted
from [12], which is in turn adapted from the Smalltalk standard library. The Plaid components mirror the trait
components, except in our version the methods of a single trait are sometimes divided across multiple states.
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1 state Reader { }
2

3 state Reading case of Reader {
4 method read() {
5 val ret = this.vector.get(this.currPos);
6 this.nextPosition();
7 }
8 }
9

10 state ReadEnd case of Reader { }
11

12 state ReadStream = Position {
13 val notEndState = Reading with NotEnd;
14 val endState = ReadEnd with End;
15 } with Reader;

Listing 5: ReadStream code.

The Position state represents the position of the pointer into a stream or collection. It has a very
limited interface which therefore makes it easy to reuse throughout an input-output and collection library.
The code for Position is shown in Listing 4. Position declares two abstract methods for setting the
position, a reference to the underlying collection (vector), constant fields for minimum and maximum
position, and a variable field for the current position3.

Interestingly, Position contains two state members, one for the end-state and one for the not-end-state.
The state members are initialized to NotEnd and End, also defined in Listing 4. These states are sub-states of
Position, as specified by the case of declarations. They implement the abstract methods of Position.
In addition, NotEnd has an additional method nextPosition, reflecting the fact that in that state, the
position can be advanced. This method increments the current position, tests if the current position is at or
past the maximum position, and transitions the receiver to the end state if the position is at the end. Similarly,
setToStart in End transitions the receiver back to the not-end state.

The crucial part in this example is that the state transitions do not explicitly reference a specific target
state, but rather reference the state members of Position. For instance, nextPosition in NotEnd
transitions this to this.endState, not End. This allows for consistent and flexible reuse, composition,
and extension of states, as illustrated hereafter.

Consider the code for a ReadStream, as shown in Listing 5. The ReadStream definition includes a
pure dimension, Reader. This dimension has two children Reading and ReadEnd, which correspond to
the ReadStream in the not-end-state and the end-state, respectively. In the not-end-state, the ReadStream
can read, and therefore Reading defines the read method. This method reads from the underlying
collection at the current position and advances the position.

The ReadStream is composed from the two dimensions Position and Reader. ReadStream
specializes NotEnd by overriding the two state members in Position. The state members in ReadStream
are composed from two states, one from each dimension of ReadStream. Therefore, when the methods in
Position and its children change state, they will change both dimensions of ReadStream. For example,
when nextPosition advances the stream to the end, the ReadStream object composed of Reading
with NotEnd will change to a ReadEnd with End.

3Abstract methods are indicated by eliding the method body; constant fields are declared with val, and variable fields with var.
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1 state ReadWriteStream = Position {
2 val notEndState =
3 Writing with Reading with NotEnd;
4 val endState =
5 WriteEnd with ReadEnd with End;
6 } with Reader with Writer;

Listing 6: ReadWriteStream code.

To Initialize a ReadStream we need to specify the starting and-states like for ResultSet. The code
to create a ReadStream x that is not at the end is val x = new ReadStream @ ReadEnd with
NotEnd;. Here again, we use the @ operator to begin the ReadStream in particular substates of the
and-states nested in ReadStream.

Since the Reader dimension has the same structure as the Position dimension it is natural for
transitions in Position to change Reader as well. In this example, there is no code in the Reader states
that enacts the state change. Instead, the Reader dimension relies on the Position dimension to perform
state changes. The state members in this example allow for this kind of dimensional reuse without extensive
glue code4. The only code required to required to reuse the dimension is the specialization of state members
in ReadStream.

We now illustrate a further step of consistent composition of states with the definition of ReadWriteStream
in Listing 6. The definition uses a new dimension, Writer, with two substates Writing and WriteEnd,
defined in the same manner as the Reader states.

This ReadWriteStream reuses code from all three dimensions with very little effort. The ReadWriteStream
is the natural extension of ReadStream. The state members are composed from all three dimensions. The
state transitions in a ReadWriteStream object will change all three dimension at once.

The ReadWriteStream example demonstrates both the power of a trait-like composition model and
its novel extension to states. We reuse ReadStream and WriteStream with little effort, as we could
achieve in a language with traits. In addition, we have a new unit of reuse, the Position dimension, which
is shared with two other dimensions. This reuse eliminates duplicate code, and helps avoid bugs. Both
the Reader and Writer of a ReadWriteStream are in the end-state or not-end state. Because the
dimension is reused we can guarantee that no programmer will err and end up with an object in an inconsistent
state like WriteEnd with Reading.

One important note is that the Writer and Reader contain no members in common, and therefore no
conflict arises. Plaid requires explicit conflict resolution at the point of composition. This conflict resolution
will be described in Section 4.2.

3.5 Validation

The introduction claims four concrete benefits of Plaid: code closely reflects design, programs are concise,
error checking is implicit, and new opportunities for reuse. These benefits were illustrated in the examples
in this section and they were discussed while describing the examples. We summarize the case here for
emphasis. We then reflect on our experience writing mid-sized programs in Plaid, in diverse domains.

4State members also have a more traditional purposes. State members, like all states, can be used to create objects. They allow us
to encode ML-style structures and functors. These abstraction mechanisms can be very powerful, especially in a typed version of
Plaid. However, these purposes are not novel to Plaid so we do not focus on these here.
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Project Lines of Code # Files
CodeGenerator 1205 24
AeminiumCodeGen 2610 8
Typechecker 4196 55
ASTtranslator 9506 107
PlaidApps 528 21
Standard Library 372 18
TestCompiler 2811 96
TestTypechecker 363 9
Total 21591 338

Table 1: Plaid code written for eight projects.

3.5.1 Concrete benefits

Code reflects design. Designs with stateful abstractions are clearly reflected in Plaid code. This is clear in
of all three examples in this section. The implementation of the file, result set, and read-write streams all
match their designs. Arbitrarily complex state-charts can be encoded in Plaid with the simple rules described
alongside the result set example. Each abstract state maps to its own state in code, so the design of the
abstraction and its protocol as a whole is highly salient in the code.

Concise programs. Since state constraints are implicitly enforced by the object model, none of our examples
included any error checking code. The implementation are therefore smaller.

Error Prevention. Plaid’s explicit state models make error checking more consistent, because the pro-
grammer cannot forget to check state constraints when a method is called. The level of abstraction of error
messages is also thereby raised: when an inappropriate method is called, instead of triggering an internal
run-time exception such as a null pointer, or (what is worse) silently corrupting data, the runtime can signal
an error that a particular method is unavailable in the current state. Also, we have shown how state members
can be used to enforce consistency of multiple dimensions of state at once.

Reuse. Plaid provides new reuse opportunities. Some state machines are used in many objects. For instance,
the Position dimension was reused in both read and write streams, and it could also be reused in many IO
and Collection libraries. Open and closed resources like the File and ResultSet are also very common.

3.5.2 Applicability to diverse domains

In order to gain practical experience with the language and experiment with typestate-oriented programming
beyond small examples, we have written several mid-sized programs in Plaid. These programs further
demonstrate the expressiveness of Plaid in a diverse set of domains including compilation, input-output,
GUIs, and web. They are all available for download from the Plaid repository5. In total, we have written
22KLOC across 338 files. A breakdown of our implementations is in Table 1. We call out items of particular
interest here.

5http://code.google.com/p/plaid-lang/
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Compiler. Plaid is self-hosting; the CodeGenerator project compiles Plaid code into Java source. Plaid code
can easily use Java libraries and many of our examples are implemented that way. In a sister project [24], we
have implemented a separate compiler for parallel-by-default code, which is the AeminiumCodeGen project.
We are currently working on a Plaid typechecker; the implementation is the Typechecker project. All these
projects are supported by AST transformations performed by the ASTtranslator project.

GUI Library. GUI libraries often impose state constraints on their clients. We implemented Plaid wrappers
for a few key Java Swing classes, including Window, Pane, and Canvas abstractions. We use states to enforce
proper initialization of these abstractions. In particular, windows should have some contents added, otherwise
they are created with size zero. Furthermore, windows are Hidden until show() is called, then they become
Visible. Panes should also have contents added. Both panes and canvases must be assigned a parent
window, and canvases should be given a preferred size. Our library is not comprehensive, but it is sufficient
to build demonstration applications—in our case, a Turing machine that uses Plaid’s states to represent the
finite state control, the marks on the tape, and the illusion of an infinite tape. Both the windowing library and
Turing demonstration application are in the PlaidApps project.

Miscellaneous The Plaidapps project includes the examples discussed earlier and a small web server and
workflow engine. The Plaid standard library includes integers, rationals, strings, options, and standard control
(e.g. if) and looping (e.g. for, while) structures. Finally, two testing projects include a number of smaller
tests and examples.

4 Semantics

In this section we present the formal definition of the Plaid language and give it a precise semantics. At
its core, Plaid is an object system with first-class generators and functions. Individual generators can be
combined and specialized using composition and operators inspired by traits [12], instantiated to create
objects, or used to specify the abstract state the object should change to. We start by describing the syntax
and object model of a core language, which is intended to be simpler than Plaid source code yet be capable of
representing all of the major semantic elements of Plaid. Then we discuss the execution semantics of the core
language.

4.1 Core Syntax

The syntax of the internal representation of Plaid is given in Figure 4. In these definitions, x ranges over
bound variables, while members of objects are represented by f,m, and s, which respectively range over
fields, methods, and state members. We use n to represent any kind of object members when we do not
distinguish between them. Abstract states are represented using tags which are generated as needed. We will
introduce each syntactic category in turn, describing its purpose and motivations.

4.1.1 Expression Syntax

Plaid contains the standard expressions found in object systems, including object creation through new,
field selection, and method calls. Because Plaid also has first-class functions, we include standard function
definition and application as well. For sequential expressions, we include let bindings and bound variable
references.
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Obj Val ov ::= mv
∣∣ dv ∣∣ mv 7 ov

∣∣ dv 7 ov
Dim Val dv ::= tag{ov}

∣∣ tag{ov} <: dv
Mbr Val mv ::= method m(x){e}

∣∣
val n = v

ObjExp oe ::= me 7 oe
∣∣ de 7 oe

∣∣ e 7 oe
∣∣

me
∣∣ de ∣∣ e

Dim Exp de ::= dv
∣∣ tag{oe} ∣∣ tag{oe} <: de

∣∣
e
∣∣ e{to}

Mbr Exp me ::= mv
∣∣ val f B x = e

∣∣
recstate{val sB x = proto sd}

State Decl sd ::= freshtag{oe} <: de
∣∣

freshtag{oe}
∣∣ oe

Trait Op to ::= \n
∣∣ n→ n′ ∣∣ me

∣∣ (tagOf e).me
Val v ::= `

∣∣ ov ∣∣ proto oe
∣∣ fn(x)⇒ e

Exp e ::= x
∣∣ v ∣∣ let x = e in e

∣∣
e(e)

∣∣ e.m(e)
∣∣ e.n ∣∣

e← e
∣∣ e� e

∣∣ new e
∣∣

match(e){c}
∣∣

freeze e
∣∣ recstate{mv}#l

Case c ::= case(tagOf e) {e}
∣∣ default {e}

Figure 4: Internal Syntax

The rest of the expression forms are related to Plaid’s encoding of abstract states and the transitions
between them:

Changing state. The Plaid core has two state change operators. ← represents a state update and only
removes portions of the receiving object that are mutually exclusive with the incoming states. For complete-
ness and flexibility, Plaid also includes a state replacement operator,�, which wipes the receiving object
clean before adding the incoming states, much like an in-place new operation. One could imagine using this
operator in a situation where an object needed to be in a particular state and no other states. This cannot be
guaranteed by the state update operator because state update leaves dimensions unrelated to the updating
state alone.

Unlike the source language, Plaid’s core does not require the target of a state change operator to be this.
This makes the core simpler and more flexible since the restriction can be enforced at the source level.

proto values. First class instance generators are provided by proto expressions. These are values which can
be stored in fields and passed as parameters. During a well-formed execution, the target of new expressions
and the right-hand side of state change expressions will evaluate to a proto value. This is because they
encapsulate object expressions, oe, which are uninitialized objects. The state change and new expressions
cause the initialization steps specified by the object expression wrapped in the proto to be evaluated for use
in creating a new object or changing the state of an existing one.
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State expressions. To allow states to be chosen dynamically at runtime, we include several expression
forms that can evaluate to a proto. As they are values, standard deference or bound variables could result in
proto expressions. Because most states included in protocols must be defined with (mutual) recursion, proto
values represented source-declared states are wrapped into a recstate. A particular proto can be selected
from the recstate as from a standard record.

The freeze expression is a more novel way to get a proto. It takes the object and wraps it up in a
proto allowing new instances to be generated from it. As an example of the use of freeze, consider the
myResultSet value defined in Listing 3. Say we wanted to do some extra initialization of the ResultSet
before using it and that over the course of a program we would create the same ResultSet over and over.
To avoid needing to do the same initialization repeatedly, one could freeze the object the fully initialized
object and then instantiated it each time a new ResultSet of this form was needed. freeze has already been
used in the Plaid compiler to more cleanly support certain initialization paradigms, such as the transformation
to let-normal form, where strings of let bindings must be concatenated together.

Matching tags. Finally, the match construct allows pattern matching based on tags. Each case tests the
target object against the tagOf another expression. This expression is expected to evaluate to a proto value
with a single outer tag which is grabbed by tagOf and compared with the tags of the target object. If the
object contains the tag, the corresponding case is executed. Cases are evaluated in order.

An example of the use of match comes from the Plaid standard library. Plaid’s syntax does not include
control structures. Instead, if and while are encoded as functions that make use of match. The states
True and False are each defined as a case of Boolean. Thus, the if function determines whether or
not to evaluate the body based on whether the object returned by the condition matches the True tag.

4.1.2 Object Value Syntax

Plaid objects are collections of tags representing the states that the object is in along with fields and methods
that provide the representation and operations of those states. In order to implement the desired semantics
these object must be organized to formally encode the relationships between tags and members that the
semantics depend on. In particular, we need to represent the following relationships between the abstract
states that the tags represent:

1. Superstates: An object in state, S, which is defined to be a case of a superstate, T , must also be in state
T . For instance, an object in the NotEnd state defined in figure 4 is also in the Position state.

2. Or-states: Distinct cases of a given state, such as the OpenFile and ClosedFile case of File,
cannot exists together in an object.

3. And-states: Both objects and states can be defined as a composite of other states. For example, the
Open state from Listing 3 is defined in terms of states Direction, Status, and Action. Objects
in the composite state are considered to be in each of the component states as well.

4. Defining states: Members must be associated with the state that declares them so that they can be
removed from an object when their defining state is removed.

To formalize these relationships, objects values are organized as hierarchical collections of dimensions, which
contain tags for the state and all of its transitive super states, and members.
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Object values. The basic component of an object is an object value, ov, which is a list of dimension
values, dv, and member values, mv. They are used to represent both top-level objects and the dimensions
and members that define a given state (see dimension values below). The 7 operator that separates each
element of the list represents composition. Object values encode and-states by allowing two dimensions to
coexist together inside the definition of a state. For instance, the object value that defines a ReadStream
would have two composed dimensions, one for the Position dimension, and the other for the Reader
dimension.

Dimension values. Dimension values, tag{ov}[<: dv], encode the structure of a state and its super states.
They are represented by a tag, tag, which is a unique name for the most specialized state from the dimension.
Associated with the tag is an object value which represents the collection of members that the state defines
along with any other dimensions that make up the and-states of the state. A dimension value may optionally
contain another dimension value encoding the superstate relationship.

By containing the representation of a given states superstates, dimension values give us a way to encode
the or-state relationship as well. Two states that are the case of the same superstate would be encoded as
separate dimensions with the same state at the root of the dimension. Because the tags in the dimensions
partially overlap, by restricting tags to appear only once in a given object value, we can ensure that no
or-states can coexist in a single object.

Concretely, we would represent an instantiated Open state from Listing 3 as

Open{Direction 7 Status 7 Action} <: ResultSet.

Here the most specific state of the represented dimension value is Open. This state is defined based on the
three states Direction, Status, and Action (defining object values not shown), and specializes the
ResultSet state, which it was defined as a case of.

A dimension is also Plaid’s version of a trait. Multiple inheritance is achieved by allowing multiple
dimensions to be composed in an object value as well as in the object values associated with the tags of a
dimension. The hierarchical nature of Plaid’s dimension prevent us from using all of the trait mechanisms for
solving the problems of multiple inheritance. In particular, a multiple inheritance system must deal with the
case when one class inherits from two classes that share a (transitive) parent. This situation is challenging
because it is non-obvious how to inherit members from the common grandparent. This problem is commonly
referred to as the diamond problem [19], because of the shape of the inheritance hierarchy diagram. The
original traits proposal [12] flattens 6 composed traits and forces any conflicts between method names to
be explicitly resolved (field were not allowed in traits). However, as Plaid’s semantics depend on members
being related to the tag they are defined in, we cannot use flattening. Instead, Plaid prevents the diamond
problem by preventing or-states from coexisting, thereby preventing the same tag and member definition
from appearing more than once (following Malayeri’s no-diamonds rule [19]). Plaid’s solution follows recent
extensions of traits including [5, 22, 9]. Like Plaid, these system support traits with fields and work in a
variety of object models including those that, like Plaid, add hierarchy and do not enforce the flattening
property. As with the original trait proposal, all name conflicts across dimensions must be explicitly resolved
in Plaid via the trait operators described below.

Member values. A member value is either a method, with a set of arguments and a body, or a field, val f ,
bound to a value, v. The member is said to be defined in the state represented by its immediately enclosing

6The flattening property from [12] states that members of an are treated equally regardless of what trait they were defined in.
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tag. As a concrete example, an object in the ClosedFile state described in Listing 1 would be represented
formally as

ClosedFile{method close(){e}}
<: File{val filename = v}

This indicates that the object is in both the ClosedFile and the File states, one of which is a substate of
the other, and each of which defines a single member.

4.1.3 Uninitialized Object Syntax

Plaid has corresponding syntax for uninitialized objects organized into object expressions, dimension expres-
sions, and member expressions. When compared to their value counterparts, they share the same structure
but contain expressions which are not yet values. In this section, we discuss the places where execution can
occur in these forms and the motivation behind them.

Object expressions. Object expressions, oe, are made up of the composition of dimension expressions,
member expressions, as well as raw expressions. The purpose of unevaluated expressions in dimension and
member expressions will be explained below. Raw expressions as components of object expressions allow
part of an uninitialized object to be determined at the time of initialization. These expressions evaluate to
proto values which are then incorporated into the initializing object. This provides for Plaid’s implementation
of dynamic trait composition by allowing portions of the object to be selected at runtime.

Dimension Expressions Dimension expression can contain unexecuted expressions in the object expression
associated with the most specific tag as well as in tags up the hierarchy if they exist. Dimension expressions
may also have associated trait operations, to, which need to be evaluated. Trait operations allow standard
manipulations such as renaming, n→ n′, and removal, \n. Note that these operate on the whole dimension,
renaming or removing all members of the specified name defined directly in tags in the hierarchy (not
including nested dimensions). This allows the changes to be preserved by state change in the dimension as
we will see below.

Members can also be added or replaced7. By default, they are (re)placed in the most specific tag of
the dimension expression. However, In cases where members need to be added or replaced in a particular
tag, they can be qualified by a particular tag, specified as with tags in case statements by tagOf another
expression. The redefinition of Position.EndState for the ReadStream in Listing 5 is an example
of using qualified trait operations. This mechanism is important in Plaid because of the hierarchical nature of
Plaid’s object model and when and how member definitions are removed during state change.

Member expressions. Only fields can be member expressions, me, as methods do not have any initializa-
tion code. On the other hand, fields can be defined with initialization expressions that require evaluation
as a part of object creation or update. In order to allow fields to refer to the initialized value of previous
fields in the same state, field expressions define an internal bound variable in addition to their external name
(this is a standard approach from [21], chapter 8). Fields are also generated by state declarations. Since

7The semantics defined here do not allow fields and states in trait operations to refer to other trait operation members. The
formalism could be extended to support this, mirroring the case for declarations in states
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Heap H ::= [` ov], H
∣∣ ·

Eval E ::= [ ]
∣∣ let x = E in e

∣∣ E(e)
∣∣ v(v,E, e)

∣∣
E.m(e)

∣∣ v.m(v,E, e)
∣∣ E.f

∣∣ E ← e
∣∣

v ← E
∣∣ v ← proto E

∣∣ E � e
∣∣

v � E
∣∣ v � proto E

∣∣ new E
∣∣

new proto E
∣∣ match(E){c}

∣∣
match(v){case(tagOf E) {e}, c}

∣∣
freeze E

∣∣ ov 7 E
∣∣ O 7 oe

∣∣ O
Obj O ::= val nB x = E

∣∣ tag{oe} <: E
∣∣

tag{E}
∣∣ tag{E} <: dv

∣∣ E{to} ∣∣
dv{to, val n = E, to}

∣∣
dv{to, (tagOf e).(val n = E), to}

∣∣
dv{to, (tagOf E).mv, to}

Figure 5: Contexts

the definitions of related states, such as the OpenFile and ClosedFile from Listing 1, are typically
recursive, the initialization of state members occurs in a recstate binding.

State members are also special in that when an uninitialized object containing state members is initialized,
new tags may need to be generated. The proto expression encapsulates uninitialized objects as discussed
above. Normally they contain object expressions, but when appearing in a recstate, they contain state
declarations, sd which may contain the freshtag operations that generates a new tag when executed, resulting
in an object expression. This feature means that new tags are generated for states defined inside states each
time the outer state is instantiated. Because these tags can then be used to pattern match on objects, this
allows Plaid to implement ML-style generative functors8. Functors have well recognized modularity benefits
that we do not discuss here.

4.2 Dynamic Semantics

We now introduce the dynamic semantics of Plaid. We formalize the execution using a small step operational
semantics. The basic evaluation judgment has the form e@H 7→ e′@H ′ and is read “expression e with heap
H evaluates to expression e′ in heap H ′”. We define a similar judgment oe@H 7→ oe′@H ′ for the evaluation
of object expressions. In this section, we will define the form of the heap and the invariants that we maintain
on it. We will also discuss the Plaid-specific evaluation rules, in particular those that use ancillary judgments
for implementing state change. As state change is at the core of Plaid’s design and is the most complicated
we go into depth about the motivation and design of the rules that implement it. Finally, we describe object
initialization and trait operations that may be involved.

4.2.1 Heap

A heap, H , is a mapping from locations, `, to object values. We place additional well-formedness requirements
on all object values stored in the heap. These restrictions prevent ambiguities from multiple inheritance.

8Generative functors, in contrast to applicative functors, generate new abstract types for each application of the functor. This
impacts pattern matching when using these generated types in a similar way as pattern matching on freshly generated tags in Plaid.
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e@H 7→ e@H

let x = v in e@H 7→ e[v/x]@H
E-LET

|{x}| = |{v}|
(fn (x)⇒ e)(v)@H 7→ e[v/x]@H

E-APP

H[`] = ov
lookup(m, ov) = (method m(x){e})

|{x}| = |{v}|
`.m(v)@H 7→ e[`/this][v/x]@H

E-CALL

H[`] = ov
lookup(f, ov) = (val f = v)

`.f@H 7→ v@H
E-FIELD

H[`] = ov1 uniqueTags(ov2)
ov1 ← ov2 ⇒ ov3 uniqueMembers(ov3)

`← proto(ov2)@H 7→ void@H[` ov3]
E-SU

uniqueTags(ov) uniqueMembers(ov)

`� proto(ov)@H 7→ void@H[` ov]
E-REPLACE

` /∈ H uniqueTags(ov)
uniqueMembers(ov)

new (proto ov)@H 7→ `@H[` ov]
E-NEW

de = tag{oe}[<: de′] tag /∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ match(`){C}@H
E-CASENOMATCH

de = tag{oe}[<: de′] tag ∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ e@H
E-CASEMATCH

match(`){default{e}, C}@H 7→ e@H
E-CASEDEFAULT

H[`] = ov

freeze `@H 7→ proto ov@H
E-FREEZE

l = ls oe = oels [recstate{val si = proto oei}#li/si]
recstate{val si = proto oei}#l@H 7→ proto oe@H

E-RECSTATESELECT

Figure 6: Expression Evaluation

Tag uniqueness. We require that all well-formed object values have no duplicate tags. As alluded to above,
this property ensures that an object is not in two cases of a single or-state at the same time. This is because
the tags representing two mutually exclusive or-states must come from the same dimension and thus must
have at the least the root tag of the dimension in common. It also prevents the diamond problem of multiple
inheritance by ensuring that a particular member definition does not appear multiple times in a single object.
This invariant is encoded in the helper judgment uniqueTags also defined in Figure 10.

Member uniqueness. Even though a given definition for a member cannot appear more than once, it is
still possible that multiple tags define members with the same name. To prevent ambiguities in this case
we require that all members of an object are provided by exactly one dimension. Because the hierarchy of
dimensions gives us a natural way to choose the visible definition (the one from the most specific tag in the
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dimension) we allow a single name to be defined directly in multiple tags from a single dimension. Formally,
two tags are in the same dimension is one is a transitive case of the other. This relaxation of classical traits
allows, for instance, a common super state to define a default behavior for a method which can be overridden
by (some of) its substates. The judgment uniqueMembers defined in Figure 10 captures this requirement.
It uses the judgments mv :: tag.x@ov, which states that member value mv from tag tag defines name x in
object value ov, and tag << tag′@ov which asserts the property that tag tag is a transitive subtag of tag′ in
object value ov. Based on these helper judgments, an object value has unique members if whenever we find
the same member defined in two tags, then one of these tags is a transitive subtag of the other. We prove that
evaluation preserves member and tag uniqueness in appendix A.

Member lookup. As an object can contain multiple members with the same name, we need an unambiguous
way to choose which one is visible. The lookup function also in Figure 10 defines this logic. When multiple
definitions are found, we know by uniqueMembers that they all come from the same dimension. Since the
tags of a dimension form a total order, we know that one of tags defining the member will be a transitive
subtag of all other tags defining the member. The definition from this most specific tag is the one returned by
lookup.

4.2.2 Expressions

The evaluation rules for expressions in Plaid are given in Figure 6. We only list only computation rules here,
defining congruence rules using evaluation contexts shown in Figure 5. In these, each expression with a
subexpression that requires evaluation defines a hole, [ ], into which any expression can be placed. Evaluation
proceeds by using the computation rule that evaluates the expression in the hole.

Standard rules. The computation rules for the evaluation of the expressions from general object systems
and the lambda calculus are almost all completely standard in our system. These include the rules E-LET, E-
APP, E-CALL, and E-FIELD for let expressions, application, method calls and field dereferences respectively.
One note is that member selection during calls and dereferences use the lookup judgment described above.
We also use standard record evaluation rules when selecting a label from a recstate (E-RECSTATESELECT).

Match. Plaid uses a first-match semantics, so that we find the first case clause whose tag matches the
target object. We find the tag to match against by grabbing the most specific tag (tagOf) from a dimension
expression wrapped in a proto value. Note that in this case the dimension expression is not evaluated since
we are only interested in the tag. If the tag is found in the target object, the code for this case is evaluated
(E-CASEMATCH); otherwise, execution proceeds to the next case (E-CASENOTMATCH). Default cases
are always executed and terminate the match if reached (E-CASEDEFAULT). Evaluation gets stuck if no
matching case is found.

Freezing. To freeze a location in the heap (E-FREEZE), we simply pull the object value from the heap and
wrap it in a proto expression.

Manipulating objects in the heap. The state change operators and new cause objects in the heap to be
changed or allocated. Because we only allow object values to appear in the heap, we must first initialize the
object that will be used to alter the heap by reducing it to an object value. Evaluation is mostly handled by
the evaluation contexts: first the expression representing the object is reduced to a proto value and then the
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ov ← ov ⇒ ov

ovt ← ov ⇒ ov′ ov′ ← ovu ⇒ ovo

ovt ← ov 7 ovu ⇒ ovo
SU-LIST

ovt ← mvu ⇒ ovt 7 mvu
SU-MV

tags(ovt) ∩ tags(dvu) = ∅ uniqueTags(dvu)

ovt ← dvu ⇒ ovt 7 dvu
SU-ADDH

tags(dv) ∩ outerTags(dvu) 6= ∅
dv ← dvu ⇒ dvr

tags(ov) ∩ tags(dvr) = ∅
ov 7 dv ← dvu ⇒ ov 7 dvr

SU-MATCHDIM

outerTags(dvu) ∩ tags(ov) 6= ∅ ov ← dvu ⇒ ovr
[tags(dvu) ∩ tags(dv) = ∅] tag 6∈ tags(dvu)

tag{ov}[<: dv]← dvu ⇒ tag{ovr}[<: dv]
SU-MATCHINNER

outerTags(dvu) ∩ innerTags(dv) 6= ∅ dv ← dvu ⇒ dvr
tags(tag{ov}) ∩ tags(dvu) = ∅

tag{ov} <: dv ← dvu ⇒ tag{ov} <: dvr
SU-MATCHSUPERINNER

tag /∈ outerTags(dvu) outerTags(dvu) ∩ outerTags(dv) 6= ∅
dv ← dvu ⇒ dvr

tag{ov} <: dv ← dvu ⇒ dvr
SU-MATCHSUPER

dvu = [dvsub] <: tag{ov′} <: [dvsup]
[tags(dvsub) ∩ tags(tag{ov}[<: dv]) = ∅] uniqueTags(dvsub)

tag{ov}[<: dv]← dvu ⇒ [dvsub] <: tag{ov}[<: dv]
SU-MATCH

Figure 7: State Update

object expression wrapped in the proto is evaluated down to an object value. An important design decision
in Plaid was to run the initializers for all members of an object expression. This happens despite the fact
that not all members may end up in the object (see the explanation of state update below). In particular, any
effectful initializers will always be run and update the wider context. We experimented with other possible
semantics but decided that a clear and unambiguous rule for when initializers were run (always) was better
than a flexible but complicated one. Furthermore, we consider it good Plaid style to avoid the use of effectful
initializers and instead use other design techniques, such as factory methods, when effectful operations are
required as a part of object initialization.

Once the initialization code in the proto has been run, the resulting object value can be used to update
the heap. In the case of new and state replacement (�) expressions it is clear what the object value that is
inserted into the heap will be. new allocates a new location on the heap and maps it to the resulting object
value. State replacement replaces the mapping of the target location on the heap with the updating object
value. Since we know the precise form of the object value that is being inserted into the heap, in order to
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1 val rs = Open {
2 Inserted <: Inserting <: Action,
3 Scrollable <: Direction,
4 Updatable <: Status }
5 <: ResultSet

Listing 7: Open, Inserted, Scrollable, Updatable ResultSet

maintain the heap invariants on object values, we can simply check that uniqueTags and uniqueMembers

both hold on the new object value as done in the rules E-REPLACE and E-NEW. On the other hand, the
semantics of updating an object on the heap using state update are much more complicated, and so we devote
the next section to a discussion of its design and proof that they maintain the necessary invariants.

4.2.3 State Update

At the core of the rule E-SU which updates the heap with the result of a state update is the state update
judgment, ov ← ov ⇒ ov, which is described in Figure 7. The judgment takes two object values and
determines the resulting object value when the target object on the left side of the arrow is changed to the state
given by the update object from the right side. The semantics of this judgement are the most complicated and
important part of Plaid’s dynamic semantics. Thus, before describing the semantics given by the rules, we
step back and give a high-level overview of the desired behavior. We then define some general properties and
assumptions of the judgment before describing the rules themselves.

Design considerations. Our goal is that the design of the state change judgment should match the semantics
of stateful abstractions as modeled by state charts and similar tools. Thus, a state update should transition a
target object from its current set of abstract states to a possibly new set of abstract states as specified by the
update object. To do this, we need to formalize this intuition in terms of object values.

Update dimensions. Our first task is to determine which abstract state the update object is changing.
That is, which dimensions of the target object need to be updated? Consider the object value (without
members) of an Open ResultSet in the Inserted, Scrollable, Updatable state, stored in val rs
as depicted in Listing 7. What should happen if we update rs to the ReadOnly state?

rs← ReadOnly <: Status

While there are clearly matches between tags in the target and update objects, since the tags are nested inside
the Open tag of the target object, it is not clear that they should be updated. However, if we think of the state
update as an transition to a new abstract state, then we can see that the nesting in the target object should not
matter. This state update specifies that the Status dimension should transition to the ReadOnly substate,
and thus out of the Updatable state.

The converse question is does nesting matter in the other direction? In other words, can a nested state
trigger a change in an abstract state? Concretely, would this state update

rs← Foo{ReadOnly <: Status}

result in an object in the ReadOnly state? Based on the semantics of state charts, the answer would be
“no”. Our definitions of object dimension indicates that the Status dimension of the Foo state is part of the
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definition of Foo. Thus, it is brought along with the transition to the Foo state. The Status state is also a
defining and-state of the Open state. Thus the resulting object cannot be consistent because two separate
dimensions are claiming the Status state meaning there would need to be duplicate tags.

Therefore, we define the dimensions along which a state update occurs to be only those found at the top
level of the object value that describes the update object. All other dimensions that are a part of the update
object are considered definitions of these dimensions and do not induce transitions but are only added to the
object with their enclosing state.

Dimension updates. Once we know which dimensions will be updated, we need to know what in those
dimensions is changed. We first note that we can treat the transition in each dimension independently as
dimensions are orthogonal by definition. Second, recall the file example from Listing 1. In this example,
we stated that the filename member was shared between the OpenFile and ClosedFile states. Thus,
when we transition from an ClosedFile to an OpenFile the members of the File state should remain
constant. This is the semantics behind the restricted update semantics of state change described in [1]. We
use and extend these semantics in a natural way to account for our hierarchical object model.

Properties of object and state update. With the intuition we have for the design, we can define some
terminology that is used in the judgment itself.

Inner and outer tags. In the informal description of state change, we differentiated between dimen-
sions and tags defined at the top level of the update object and those that appear within a top-level dimension.
Figure 10 defines two judgments, outerTags and innerTags, which capture this distinction. The
outerTags of an object value, ov, are all the tags which appear as the most specific tag and any of its super
tags from dimensions appearing directly in ov. For example, using rs, the ResultSet object from Listing 7,
outerTags(rs) = {Open,ResultSet}. Conversely, the innerTags of an object value are all of the
tags defined in dimensions that are recursively included in the definition of each of the outer tags. For example,

innerTags(rs) = {Inserted, Inserting, Action,
Scrollable, Direction, Updatable, Status}

Unique dimension property. Given a dimension within which to transition the target object, we need
to find the location of the matching dimension within the target object value. To do this, we look for the part
of the object that has tags which overlap the outer tags of the update dimension. We ignore all super-tags of
the matching tag in the update dimension under the assumption that these supertags will match the tags in the
target. This assumption is based on the the Unique Dimension Property which states that a single unique
tag can only ever appear in a single dimension. That is a tag is either has no super tags or always appears
with the same supertag. While this property is not guaranteed by the syntax and semantics of the internal
language, it is enforced by the elaboration from Plaid’s source syntax so we assume it in our rules.

Maintaining the uniqueTags property. Rule E-SU in Figure 6 does not check whether the object
returned from the state update judgement has unique tags. Therefore the state update judegment must maintain
this property. Formally: If uniqueTags(ov1) ∧ ov1 ← ov2 ⇒ ov3, then uniqueTags(ov3). A proof of this
property can be found in appendix A.
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oe@H;T 7→ oe@H;T

[oe′ = oe[v/f ′]]

val f B f ′ = v[ 7 oe]@H 7→ val f = v[ 7 oe′]@H
E-RECFIELD

sd = freshtag{oe}[<: de] tag is fresh
r = recstate{val sd B xd = v, val sB x = proto (tag{oe}[<: de]), val sr B xr = proto sdr}[ 7 oe]

recstate{val sd B xd = v, val sB x = proto sd, val sr B xr = proto sdr}[ 7 oe]@H 7→ r@H ′ E-RECSTATE1

oe′i = oei[recstate{val si = proto oei}#si/xi]

[oe′ = oe[recstate{val si = proto oe}#si/xi]]

recstate{val si B xi = proto oei}[ 7 oe]@H 7→ val si = proto oe′i[ 7 oe′]@H
E-RECSTATE2

(tag{oe} <: proto de[{to}])[ 7 oe′]@H 7→ (tag{oe} <: de[{to}])[ 7 oe′]@H
E-DE

proto[ov 7 ](proto oe[{to}])[ 7 oe′]@H 7→ proto[ov 7 ](oe[{to}])[ 7 oe′]@H
E-OE

dv{to} ⇒ dv′

(dv{to})[ 7 oe]@H 7→ dv′[ 7 oe]@H
E-TRAITOPS

Figure 8: Object Evaluation

Inference rules. With this understanding, we can describe the rules that produce the object value after a
state update operation. The rules start by breaking apart the update object ov into the individual member
values and dimension values and processing the state changes for each dimension or value individually (SU-
LIST). This is allowed since each dimension can be treated independently. We can assume that uniqueTags
holds for each dimension individually since it holds for the object as a whole. For member values (SU-MV)
and dimension values for which there is no overlap between the tags of the target object and update dimension
(SU-ADDH), we just compose the update object with the target object. The rest of the rules assume that there
is a match between the outer tags of the update object and the tags of the target object. If that is not the case,
then the evaluation gets stuck.

SU-MATCHDIM covers the case where we have found a particular dimension of the target object that
contains the tags that are changing. By the unique dimension property explained above, we know that the
outerTags(dvu) will not appear in ov, so it suffices to calculate the state update on just the matched
dimension. To ensure that we maintain the unique tags property, we can assume that both the result of the
state update and the unmatched portion of the object have unique tags, and so it suffices to check that the tags
of these two portions of the object do not intersect.

SU-MATCHINNER handles the case where there is overlap between the innerTags of the current tag
and the outerTags of the update dimension. We recursively find the state update on just this matching
portion and then check that the tags from the resulting object value do not intersect with the tags of the super
tag, if it exists, to maintain the uniqueTags invariant.

In SU-MATCHSUPERINNER, we find that the matching dimension is defined somewhere inside of a
super tag. Thus, we run state update on just the supertags. We then verify that the tags of the result are
distinct from the tags of the subtag and its innerTags to maintain the uniqueTags invariant.
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SU-MATCHSUPER represents the case where we have found the right dimension, but have not reached
the level of the dimension where the tags overlap. The current tag of this dimension is not in the outer tags
of the update dimension, but there is overlap somewhere in its super tags and so we find the updated state
from that portion of the dimension. In this case, we know that the current tag will be removed with any of its
nested tags, which means that we do not need to check if these tags would conflict with tags that enter the
object with the update dimension to preserve uniqueTags.

The base case SU-MATCH handles the actual alteration of the target dimension. The current tag matches
a specific tag in the outer tags of the update dimension, which indicates that the state update only affects
states below this point in the dimension. In particular the tags below this one in the dimension in the target
object are discarded, as already occurred through the SU-MATCHSUPER rule. In their place are put all the
subtags of the matched tag from the incoming dimension. To make sure that we do not have duplicate tags
anywhere, we only need to check that the tags added from the update dimension do not intersect with the tags
that are in its new supertags.

Example. To give a specific example, consider evaluating the following state update on the object defined
in Listing 7:

rs← ReadOnly <: Status

The state updates proceeds first by finding that there is tag overlap between the incoming and target
objects and a match for the Status tag of the incoming state nested inside the Open state with the SU-
MATCHINNER. Next it finds the correct dimension Updateable <: Status using the SU-MATCHDIM rule.
It discards the Updateable tag and recurses up the dimension in the SU-MATCHSUPER rule and finally
adds the ReadOnly tag in its place with the SU-MATCH rule.

Reduction rule The E-SU reduction rule uses the state update judgement to determine what object value
to update the target object to. The state update judgement incrementally checked that uniqueTags was
maintained. It does not guarantee that uniqueMembers is satisfied and so the rule checks that the resulting
object value has unique member declarations.

4.2.4 Object Evaluation

The final class of reductions that we must model is that of state expressions, including the initialization of
object expressions within a proto. These rules are defined in Figure 8. Congruence rules are again taken care
of by evaluation contexts from Figure 5.

• E-RECFIELD: When field members have been evaluated down to values, we propagate them forward
into the rest of the declarations that need to be initialized by substituting the value in for the bound
variable on the right of the B. This allows subsequent fields to use the values of previously declared
fields during their initialization. After this propagation, we do not need to keep track of the bound
variable any longer and so do not record it in the member value. Note that these semantics force us to be
strict about the order in which portions of the object are initialized. In particular member declarations
are initialized from left to right as specified by the evaluation contexts.

• E-RECSTATE1: If there are freshtag directives in the state declarations of a recstate, new tags are
generates by picking a fresh tag not previously mentioned.
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• E-RECSTATE2: After assigning new tags to all of the state declarations inside a recstate, we need to
remove the recstate construct and convert it into a list of val declarations. This is done in a manner
similar to the fix construct in the lambda calculus. Since our recstate is modeled as a record, we
replace all references to the inner bound variable of each of the nested state vals with selections of the
external name from the recstate. We do this both inside the object expressions of each proto as well as
in subsequent declarations. Note again that after propagation we can remove the bound variable from
the val declaration.

• E-DE and E-OE: These rules state that it is possible to unwrap a proto that is nested inside another
proto. This can occur when a proto is part of an object expression inside another proto (E-OE), or
when a proto is in a dimension expression, which only appear in proto expressions (E-DE). In either
case, if trait operations are associated with this proto, then they are retained. Execution will continue
by evaluating the wrapped object expression if needed.

• E-TRAITOPS: This rule applies only once the all of the trait operations have been fully reduced and
proceeds using the trait operations judgment defined below to produce a new dimension value.

4.2.5 Trait Operations

As with state change, we define a separate judgement for trait operations that applies once all trait operations
have been fully initialized, meaning that they can all be applied atomically without reduction. The rules for
initialization of trait operations are all congruence rules handled by evaluation contexts (see Figure 5). Thus,
the judgement, ov{sp} ⇒ ov, does not require a heap. In general, trait operations follows previous work on
traits. However, Plaid’s object model, unlike traditional traits models, is hierarchical. Hence, trait operations
other than the local member addition must take this hierarchy into account.

Local member updates are agnostic to whether the added member is already a member of the tag and
simply add the new member, replacing the existing member if one exists (T-MEMBER). Updates of members
in specific tags act the same, but first must recurse through the object value looking for the specified tag
before performing the member update. The computation will get stuck if the tag is not found. Because each
of these trait operations, as well as member renaming described below, may potentially add new members,
there is the danger that the object value might no longer satisfy the uniqueMembers invariant. However,
since the specialization must be occurring as part of object instantiation, it will be checked at the point that
the object is created, so we do not make the check here.

Member removal and renaming operate on the whole object, removing or renaming instances of members
with the given name throughout. This is in contrast to lookup, which stops at the first declaration of the
member. These semantics are required in order to allow trait composition, which includes the ability to
remove members from a trait and instead provide them in another trait. This would result in a conflict if some
members were left in the old dimension.

5 Elaboration

The core language defined in the previous section shares much in common with the full Plaid programming
language, but there are still differences. The source syntax is defined in figure 11. The semantics of the full
Plaid language are defined as an elaboration into the core language defined in appendix B.

For most expressions, the elaboration proceeds structurally, without changing the construct itself. For
field bindings, we add the internal variable referred to above, and replace references to the field in later field
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ov{to} ⇒ ov

dv{to} ⇒ dv′ dv′{to} ⇒ dv′′

dv{to, to} ⇒ dv′′
T-GENERAL

ov = ov′[ 7 mv′] [name(mv′) = x = name(mv)]

(tag{ov}[<: dv]){mv} ⇒ tag{ov′ 7 mv}[<: dv]
T-MEMBER

ov{\n} ⇒ ov′ [dv{\n} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-REMOVEDV

dv{\n} ⇒ dv′ ov{\n} ⇒ ov′

(dv 7 ov){\n} ⇒ dv′ 7 ov′
T-REMOVEOV1

name(mv) = n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ ov′
T-REMOVEOV2

name(mv) 6= n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ mv 7 ov′
T-REMOVEOV3

ov{n→ n′} ⇒ ov′ [dv{n→ n′} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-RENAMEDV

dv{n→ n′} ⇒ dv′ ov{n→ n′} ⇒ ov′

(dv 7 ov){n→ n′} ⇒ dv′ 7 ov′
T-RENAMEOV1

name(mv) = n rename(n′,mv) = mv′ ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv′ 7 ov′
T-RENAMEOV2

name(mv) 6= n ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv 7 ov′
T-RENAMEOV3

de = tag{oe}[<: de′] ov{tag.mv} ⇒ ov′

(ov){(tagOf proto de).mv} ⇒ ov′
T-STATEMEMBER

tag /∈ tags(dv) ov{tag.mv} ⇒ ov′

(dv 7 ov){tag.mv} ⇒ dv 7 ov′
T-STATEMEMBEROV1

tag ∈ tags(dv) dv{tag.mv} ⇒ dv′

(dv[ 7 ov]){tag.mv} ⇒ dv′[ 7 ov]
T-STATEMEMBEROV2

tag 6= tag′ ov{tag′.mv} ⇒ ov′ [dv{tag.mv} ⇒ dv′]

(tag{ov}[<: dv]){tag′.mv} ⇒ tag{ov′}[<: dv′]
T-STATEMEMBERDV1

(tag{ov}[<: dv]){mv} ⇒ dv′

(tag{ov}[<: dv]){tag.mv} ⇒ dv′
T-STATEMEMBERDV2

Figure 9: Trait Operations

initializers with the fresh variable. Sequences of state declarations are transformed into recstate blocks. Each
state declaration is transformed into a val declaration which binds to a proto representing the uninitialized
state, with a freshtag expression for generating the state’s tag when the declaration is executed.

Our formal semantics defines all of the Plaid language except for module linking and cross language
binding. Module linking currently follows the Java standard, including packages, imports, and a classpath
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uniqueTags(ov) uniqueMembers(ov) lookup(x, ov) = mv dv ∈ ov mv :: tag.x@ov
tag <<: tag@ov validTagMembers(ov) rename(n,mv) = mv name(mv) = n
tags(ov) outerTags(ov) innerTags(ov)

tag /∈ tags(ov) [ ∪ tags(dv)] [tags(ov) ∩ tags(dv) = ∅]
uniqueTags(ov) [uniqueTags(dv)]

uniqueTags(tag{ov}[<: dv])
UNIQUETAGSDV

tags(dv) ∩ tags(ov) = ∅ uniqueTags(dv) uniqueTags(ov)

uniqueTags(dv 7 ov)
UNIQUETAGSOV1

[uniqueTags(ov)]

uniqueTags(mv[ 7 ov])
UNIQUETAGSOV2

mv1 :: tag1.x@ov ... mvn :: tagn.x@ov
tagi <<: tag1@ov ... tagi <<: tagn@ov

lookup(x, ov) = mvi
LOOKUP

validTagMembers(ov)
∃n(∃tag mv :: tag.n@ov ∧ ∃tag′ mv′ :: tag′.n@ov) =⇒ (tag <<: tag′@ov ∨ tag′ <<: tag@ov)

uniqueMembers(ov)
UNIQUEMEMBERS

dv ∈ dv
LEAF1

dv ∈ ov′

dv ∈ mv 7 ov′
LEAF2

tag 6= tag′ tag{ov}[<: dv] ∈ dv′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[ 7 ov′′]
LEAF3

tag 6= tag′ tag{ov}[<: dv] ∈ ov′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[ 7 ov′′]
LEAF4

tag{[ov1 7 ]mv[ 7 ov1]} <: dv ∈ ov

mv :: tag@ov
MBRINTAG

tag{ov′} <: dv ∈ ov
tag′ ∈ outerTags(tag{ov′} <: dv)

tag <<: tag′@ov
CASEOF

name(mv) 6∈ names
[validTagMembers(names ∪ name(mv), ov′)]

validTagMembers(names,mv[ 7 ov′])
VTM1

validTagMembers(∅, ov) [validTagMembers(∅, dv)] [validTagMembers(names, ov′)]

validTagMembers(names, (tag{ov}[<: dv])[ 7 ov′])
VTM2

n = name(val n = v)
NAME1

m = name(method m(x){e})
NAME2

rename(a, val n = v) = val a = v
RENAME1

rename(n,method m(x){e}) = method n(x){e}
RENAME2

tags(ov) = innerTags(ov) ∪ outerTags(ov)
TAGS

outerTags(tag{ov}[<: dv]) = {tag} [∪ outerTags(dv)]
OUTERDV

outerTags(dv[ 7 ov]) = outerTags(dv) [∪ outerTags(ov)]
OUTEROV1

outerTags(mv[ 7 ov]) = ∅ [∪ outerTags(ov)]
OUTEROV2

innerTags(tag{ov}[<: dv]) = tags(ov) [∪ innerTags(dv)]
INNERDV

innerTags(dv[ 7 ov]) = innerTags(dv) [∪ innerTags(ov)]
INNEROV1

innerTags(mv[ 7 ov]) = ∅ [∪ innerTags(ov)]
INNEROV2

Figure 10: Helper Judgements
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Declarations D ::= SD
∣∣ method m(x){SE}

∣∣
val f = SE

State Decl. SD ::= val s = S
∣∣ state s = S

∣∣
state s case of s{TO} = S

States S ::= freeze(SE)
∣∣ {D} ∣∣ s{T} ∣∣

S with S
∣∣ SE.s

∣∣ s
Trait Ops TO ::= \n

∣∣ n→ n′ ∣∣
val f = SE

∣∣ val s = S
∣∣

val s.f = SE
∣∣ val s.t = S

∣∣
method m(x){SE}

∣∣
method s.m(x){SE}

Expression SE ::= x
∣∣ let x = SE in SE

∣∣ SE.f
∣∣

SE(SE)
∣∣ SE.m(SE)

∣∣
SE ← S

∣∣ SE � S
∣∣ new S

∣∣
match(SE){C}

∣∣
Case C := case SE.s {SE}

∣∣
case s {SE}

∣∣ default {SE}
Compil. Unit CU ::= D

Figure 11: Source Syntax

for loading elements. Plaid primitives are defined using Java classes and methods, which can be directly
accessed in Plaid via their fully-qualified Java names. Details of both of these aspects of Plaid are discussed
in more detail in the Plaid language definition [17].

6 Discussion and Future Work

The primary contribution of the Plaid language is providing a way for programmers to express state machine
abstractions directly in the source code of their programs. Plaid supports the major state modeling features of
Statecharts, including state hierarchy, or-states, and and-states. The explicit representation of states makes
the design more salient in the code, enhancing programmer understanding. For example, the separation
of members into different abstract states helps programmers quickly learn what operations are available in
each state. In the future, visualization tools that leverage explicit state constructs to automatically generate
statecharts from Plaid code could provide even greater benefits.

Plaid has the potential to make code more reliable. Not only do explicit states help programmers
understand libraries better, avoiding errors in the first place; the runtime will also verify that the libraries are
used correctly according to their state abstractions. Even a “method not available in this state” error is better
than a silent corruption, but in future work, we believe we can leverage explicit states to do much better. For
example, a state-related error message could be paired with a suggestion about what methods could be called
in order to move the object into a correct state.

Plaid’s trait-like state composition model provides a way of reusing not just fields and methods, but state
abstractions. This additional layer of reuse has the potential to reduce redundancy in code and specifications,
while enhancing developer productivity. The confidence that comes with the error checking in Plaid’s state
model may also help developers to evolve and refactor software with greater confidence.
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In future work, we plan to build more programs with Plaid in order to investigate the possible benefits
outlined above. We are also developing a gradual type system that can complement Plaid’s dynamic state
checking with static checking, where desired by programmers [28]. We believe Plaid demonstrates a new
kind of language, and we are excited to explore the consequences that language may entail.
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Appendices
A Unique members proof

Theorem 1: If uniqueTags(ov1) ∧ ov1 ← ov2 ⇒ ov3, then uniqueTags(ov3).
Proof: By induction on ov1 ← ov2 ⇒ ov3.
Case SU-List:

uniqueTags(ovo) by the induction hypothesis.
Case SU-MV:

uniqueTags(ovt) by assumption.
uniqueTags(ovt 7 mvu) by rule UniqueTagsOV2.

Case SU-AddH:
uniqueTags(ovt) by assumption.
uniqueTags(ovt 7 mvu) by rule UniqueTagsOV1.

Case SU-MatchDim:
uniqueTags(ovt) by assumption.
uniqueTags(dvr) by the induction hypothesis.
uniqueTags(ovt 7 dvr) by rule UniqueTagsOV1.

Case SU-MatchInner:
uniqueTags(tag{ov} <: dv) by assumption.
uniqueTags(ovr) by the induction hypothesis.
tag 6∈ tags(dv) ∧ tag 6∈ tags(ov) ∧ uniqueTags(dv) ∧
tags(ov) ∩ tags(dv) = ∅ by inversion of
uniqueTags(tag{ov} <: dv).
tag 6∈ tags(ovr) by Lemma 3.
tags(ovr) ∩ tags(dv) = ∅ by Lemma 2.
uniqueTags(tag{ovr} <: dv) by rule UniqueTagsDv.

Case SU-MatchSuperInner:
tag 6∈ tags(dvr) by Lemma 3.
tags(ov) ∩ tags(dvr) = ∅ by Lemma 2.
uniqueTags(tag{ov} <: dvr) by UniqueTagsDv.

Case SU-MatchSuper:
uniqueTags(dvr) by the induction hypothesis.

Case SU-Match:
uniqueTags(dvsub <: tag{ov} <: dv) by rule UniqueTagsDv.

�

Lemma 1: If ov1 ← ov2 ⇒ ov3 then
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2)
Proof: By easy induction on ov1 ← ov2 ⇒ ov3
�

Lemma 2: If ov1 ← ov2 ⇒ ov3 ∧
tags(ov) ∩ tags(ov1) = ∅ ∧ tags(ov) ∩ tags(ov2) = ∅ then tags(ov) ∩ tags(ov3) = ∅
Proof:
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tags(ov) ∩ (tags(ov1) ∪ tags(ov2)) = ∅
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2) by Lemma 1.
tags(ov) ∩ tags(ov3) = ∅

�

Lemma 3: If ov1 ← ov2 ⇒ ov3 ∧ tag 6∈ tags(ov1) ∧
tag 6∈ tags(ov2) then tag 6∈ tags(ov3)
Proof:

tag 6∈ (tags(ov1) ∪ tags(ov2)) = ∅
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2) by Lemma 1.
tag 6∈ tags(ov3)

�

Theorem 2: If we e@H 7→ e′@H ′ and ∀` ∈ H.uniqueTags(H[`]), then ∀` ∈ H ′.uniqueTags(H ′[`])
Proof: By induction on e@H 7→ e′@H ′

Case E-New and E-Replace:
∀`′ ∈ H[` ov].uniqueTags(H[`′]) by the induction hypothesis and rule premise.

Case E-Su:
uniqueTags(ov3) by Theorem 1.
∀`′ ∈ H[` ov3].uniqueTags(H[`′]) by the induction hypothesis.

All Other Rules:
Heap does not change.

B Source Translation Rules

The rules in figures 12 and 13 below describe how to translate a program written in the Plaid source language
given in figure 11 to the internal language defined in figure 4.
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CU  e D  oe SD  val sB s′ = se S  oe TO  to groupStates(D)

groupStates(D) oe

CU  let top = new (proto oe) in top.main()
TR-CU

D  oed SEf  ef f ′ = freshname oe′d = oed[f
′/f ]

val f = SEf , D  val f B f ′ = ef 7 oe′d
TR-DECLFIELD

D  oed SE  e

method m(x){SE}, D  method m(x){e} 7 oed
TR-DECLMETHOD

D  oed SD  val sB s′ = sd

{SD}, D  (recstate{val sB s′ = proto sd} 7 oed)[s′/s]
TR-DECLSTATES

S  oe s′ = freshname

state s = S  val sB s′ = (proto freshtag{oe})
TR-STATETAG

S  oe s′ = freshname

val s = S  val sB s′ = oe
TR-STATEVAL

ss{TO} de S  oe s′ = freshname

state s case of ss{TO} = S  val sB s′ = (proto freshtag{oe} <: de)
TR-STATECASE

groupStates(D) oe

{D} oe
TR-STATEDECL

S1  oe1 S2  oe2

S1 with S2  oe1 7 oe2
TR-STATEWITH

SE  e

freeze(SE) freeze(e′)
TR-STATEFREEZE

SE  e

SE.s e.s
TR-STATESELECT

s s
TR-STATENAME

TO  {to}
s{TO} s{to}

TR-STATEINIT
TO  to TO  to

TO, TO  to, to
TR-SPECGENERAL

val f = SE  val f B f ′ = e

val [s.]f = SE  [s.](val f = e)
TR-SPECFIELD

method m(x){E} method m(x){e}
method [s.]m(x){E} [s.](method m(x){e})

TR-SPECMETHOD

S  oe

val [s.]t = S  [s.](val t = oe)
TR-SPECSTATE

\n \n
TR-SPECREMOVE

n→ n′  n→ n′ TR-SPECRENAME
groupStates(SD′, D) = {sdi = SDi}, D′ s = name(SD)

groupStates(SD, SD′, D) = {s = SD, sdi = SDi}, D′
TR-GSTADD

s = name(SD) D = · ∨ (D = (D,D′) ∧D 6= SD)

groupStates(SD,D) = {s = SD}, groupStates(D)
TR-GSTSTART

D 6= SD

groupStates(D,D) = D, groupStates(D)
TR-GMEMBER

Figure 12: Translate Declarations
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SE  e C  c

S  oe

new S  new oe
TR-NEW

x x
TR-VAR

SEf  ef SEa  ea

SEf (SEa) ef (ea)
TR-APP

SEr  er SEa  ea

SEr.m(SEa) er.m(ea)
TR-CALL

SE  e

SE.f  e.f
TR-FIELD

SE  e S  oe

SE ← S  e← oe
TR-SU

SE  e S  oe

SE � S  e� oe
TR-REPLACE

SEx  ex SEb  eb

let x = SEx in SEb  let x = ex in eb
TR-LET

SE  e C  c

match(SE){C} match(e){c}
TR-MATCH

SE  e

case s {SE} case s {e}
TR-CASE1

SEc  ec SE  e

case SEc.s {SE} case ec.s {e}
TR-CASE2

SE  e

default {SE} default {e}
TR-DEFAULT

Figure 13: Translate Expressions
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